图源:pixabay
01
赶配送
目前,一些配送机器人已经可以通过使用多传感器导航系统,在导航过程中辨别二维或三维的结构,精准、灵敏地识别障碍,实现厘米级避障、秒级反应速度,大幅度提高对环境的感知能力,保证配送过程的导航稳定性。华盛顿Steak N Egg Diner餐厅老板奥斯曼·巴里(Osman Barrie)从一家名为Bear Robotics的初创公司租用了一台名为“Servi”的机器人,负责摆桌子、供应食品和饮料。
图源:巴伦周刊
02
跳舞蹈
美国工程与机器人设计公司波士顿动力(Boston Dynamics)联动自家的四足机器人Spot和人形机器人Atlas跳起了男团舞。它不仅可以完成动作,还能将歌曲MV中的人物动作模仿出来。这些舞蹈的展示不但有趣,还体现了机器人之间如何稳健、灵活地合作。
图源:Boston Dynamic
03
做手术
医学手术通常要求高精度操作。以玻璃体视网膜眼科手术为例,理想手术操作精度要求为10微米,是头发直径的1/8。而医生手部物理抖动幅值一般为100微米,这意味着完成一台高精度手术对医生的要求极其苛刻。
有了手术机器人的介入,医生可以在相机反馈的辅助下,利用操纵杆控制眼球切口中的微型视网膜手术机器人R2D2,将起皱的视网膜(厚度仅有10微米)铺平,修复病人的视力。
图源:pixabay
04
修动车
配备机器视觉、图像识别等技术,动车组检测机器人已经拥有了动车一级检修作业能力。
它由检测机器人、中心服务器、手持移动终端、列位检测和信息管理平台等五大模块组成,可全自动检测所有型号动车组车底和转向架可视部件,具备数据无线传输、故障自动判断等功能,作业效率是人检的2.75倍。
图源:pixabay
05
做刑侦
日本机器人公司SBRH研发了一款机器人Pepper,可以对人类的面部表情进行识别和解读,与人脸识别技术相伴而生。通过对人类情感甚至是心理活动的有效识别,使机器人获得类似人类的观察、理解、反应能力,可应用于机器人辅助医疗康复、刑侦鉴别等领域。
图源:中国机械工程学会
06
助行走
2014年,世界杯开幕式首次由一位瘫痪少年负责开球。这位少年借助先进的机械外骨骼结构,通过大脑意识从轮椅上站起来大脚开球。
机械外骨骼结构被视作“可穿戴的机器人”,兼具有机器人的智能性与人体骨骼的仿生性:外骨骼通过各类传感器探测脑内电极和肌肉电信号,将活动信号传输给机器人,机器人再进行具体的机械动作。
图源:环球网
07
做清洁
目前使用最普遍的是清洁机器人。随着技术的迭代升级,清洁机器人的功能逐渐多样化,也可以满足多样化清洁需求,已经应用至交通枢纽、写字楼、园区等诸多场景。同时,清洁机器人的产品品类也日渐多元化,除了可以地面清洁之外,还出现了泳池清洁机器人以及解决幕墙清洗难题的高空清洁机器人。
图源:pixabay
08
忙配药
零售药店沃博联(WBA)正在研究使用机器人技术来配药。目前该公司配置了9个自动化“微型配送”中心,机器人可以配制80种不同的药物,为2000多家药房提供支持,每小时最多可以处理300张处方的配药,这与一家人手充足的药房一天配药数量相同。
这不仅是为了节省劳动力成本,还可以缩短病人在药房里的等待时间,药剂师可以投入更多精力为病人提供咨询服务,处理紧急处方需求等。
图源:pixabay
09
进厨房
美国连锁餐厅Chipotle Mexican Grill (CMG)最近开始在洛杉矶测试机器人Chippy,这款机器人专门用来制作玉米片。它能把玉米片浸入热油中,搅动油锅中的篮子,然后用盐和酸橙调味。CMG首席技术官库尔特·加纳(Curt Garner)称,虽然仍然需要人工打包和上菜,但在订单激增的午餐高峰期机器人是不可或缺的。
图源:pixabay
10
帮搜救
哈佛大学的研究人员从蚂蚁中获得灵感,利用“光激素”设计出一组机器人RAnts。这种机器人可以相互响应,协同工作,并对环境做出反应。RAnts 仅通过简单的本地规则进行编程,遵循光敏场的梯度,避开光敏素密度高的其他机器人,并在光敏素密度高的地方捡起障碍物,然后将它们扔到光敏素密度低的地方。
根据这些规则机器人可以实现复杂的集体“越狱”行动,并在未来应用于解决复杂的问题,如建筑、搜救和防御。
图源:网络
机器人的功能多样化离不开其3D视觉系统、位置测绘以及机械工程的进步。“集群智能”(swarm intelligence)也越来越帮助机器人共享任务并一起工作。此外,通过5G或Wi-Fi网络连接,可以实现对机器人的远程监控、编程和故障排除。
知识的量化与技术的进步不断为机器人带来新变化,而对于人本身而言,其最宝贵的智慧与灵性终究不可量化。如何做好机器与人的协同共生是未来我们共同面对的课题。
审核:张宁 策划:李政葳 撰文:穆子叶 编辑:李飞
参考 |新华社、参考消息网、科学网、科技日报、虎嗅
【观点】构筑顶层设计 开创工业和信息化领域数据安全管理新格局******
近日,工业和信息化部出台了《工业和信息化领域数据安全管理办法(试行)》(以下简称“《管理办法》”)。《管理办法》作为工业和信息化领域(以下简称“工信领域”)数据安全管理顶层制度文件,是全面贯彻落实《数据安全法》等国家数据安全法律法规的重要举措,也是前期工信领域数据安全管理实践经验的固化总结。《管理办法》以安全发展理念为指引,建立健全了工信领域数据安全制度机制,搭建起工信领域数据安全管理的“四梁八柱”,细化明确了数据全生命周期安全保护要求,为工信领域企业落实数据安全管理和技术保护措施提供了明确指引,标志着工信领域数据安全管理工作迈出了具有里程碑意义的重要一步。
一、夯实数据安全根基,建立工信领域数据安全管理基本遵循
随着全球数字经济的蓬勃发展,数据已成为关键生产要素和核心战略资源,数据安全的基础保障作用和发展驱动效应日益突出,攸关国家安全、公共利益和个人权利。党和国家敏锐把握数字经济发展的战略机遇,将数据作为新型生产要素,加快培育数据要素市场,充分释放数据红利,同时,高度重视、不断推进数据安全保护工作。党的二十大报告立足中华民族伟大复兴战略全局和世界百年未有之大变局,做出“统筹发展与安全”的重要部署,要求“坚定不移贯彻总体国家安全观”,“以新安全格局保障新发展格局”,重点强化数据安全保障体系建设。
安全保障,制度先行。国务院《“十四五”数字经济发展规划》将研究完善行业数据安全管理政策作为提升国家总体数据安全保障水平的关键一环。《数据安全法》《个人信息保护法》等国家重大数据安全立法加速出台,进一步明确了数据安全行政监管的上位法依据和职责边界,对各行业、各领域承接落实也提出了新要求。
工信领域是我国数字化转型的排头兵和产业数字化的主阵地。信息通信网络覆盖社会千行百业,是经济社会运行的“神经中枢”,汇聚海量用户数据和关系国计民生的重要数据。工业数字化转型催生海量工业数据资源,且数据互联互通加快导致数据安全风险与威胁点增多,数据安全形势愈发严峻复杂,工信领域数据安全保护亟待强化。加速完善工信领域数据安全管理政策,夯实数据安全工作基石,是认真践行总体国家安全观,统筹发展和安全,护航工信领域数字化发展的必然要求,也是落实党和国家决策部署、提升国家总体数据安全保障水平的必担之责。
二、筑牢数字安全屏障,明确工信领域数据安全保护的规则指引
《管理办法》坚持安全与发展并重、鼓励与规范并举原则,推动建立健全安全可控、弹性包容的工信领域数据安全规则体系,一方面,明确数据安全管理关键制度要求,划定工信领域数据流通利用的安全基线,同时,构建多元主体协同共治格局,着力提升工信领域数字信任,为我国数字化转型保驾护航。具体来说,《管理办法》核心内容包括以下几个方面:
(一)明确管理体制,建立三级联动的数据安全工作机制
《管理办法》衔接国家数据安全工作协调机制,充分结合工信领域既成的监管体制,构建了“部-地方-企业”三级联动的数据安全工作机制:在部层面,由工业和信息化部负责工信领域数据安全总体统筹与监督管理。在地方层面,地方工业和信息化主管部门、地方通信管理局、地方无线电管理机构分别负责对本地区工业数据处理者、电信数据处理者、无线电数据处理者的数据处理活动和安全保护进行监督管理。在企业层面,工业数据处理者、电信数据处理者、无线电数据处理者承担本单位的数据安全主体责任,落实工信领域数据安全管理要求。这种条块结合的监管组织架构既贯彻了《数据安全法》对于各地区、各行业、各领域数据安全监管的责任分工,也充分考虑了工信领域管理的共性需求与实践差异。
(二)细化分类分级,建立涵盖事前事中事后的监管制度机制
《管理办法》承接细化《数据安全法》数据分类分级保护要求,以预防、控制和消除数据安全风险为核心,建立工信领域数据安全管理关键制度机制。一是明确工信领域数据分类参考因素及数据分级识别依据,建立重要数据和核心数据目录备案管理机制,为工信领域数据分类分级安全管理提供实操指引。二是建立工信领域数据安全风险监测机制及风险信息上报和共享机制,对数据安全风险进行监测、汇聚、分析、通报,加强工信领域数据安全风险的事前感知。三是明确应急处置机制流程,制定工信领域数据安全事件应急预案,预防和减少数据安全事件发生后造成的损失和危害。四是完善投诉举报机制,建立部省两级数据投诉举报渠道,充分发挥社会监督作用,广泛获取数据安全违法信息。五是建立数据安全检测、认证、评估管理制度,提升工信领域数据安全产品、服务质量及安全保障能力,推动数字安全产业发展。
(三)落实主体责任,加强重要数据和核心数据重点保护
《管理办法》对标《数据安全法》《网络安全法》《个人信息保护法》中的数据安全保护义务,明确细化工信领域数据处理者的数据安全主体责任。一是要求建立数据全生命周期安全管理制度,制定各环节分级防护要求和操作规程,配备管理人员,加强权限管理,制定应急预案,定期开展教育培训以及其他必要措施。二是要求结合数据收集、存储、使用、加工、传输、提供、公开等环节特点设置针对性保护措施,有效加强数据安全保护。三是以一般数据、重要数据、核心数据三级数据划分为主线贯穿数据全生命周期安全管理,要求采取工作体系建设、内部登记审批、关键岗位管理、安全防护等管理及技术措施对重要数据和核心数据进行重点保护,切实保障国家安全和社会公共利益。
(四)引入多利益相关方,构建数据安全协同治理生态
数据安全保护涉及主体多元、场景复杂、环节众多,构建良好的数据安全治理生态需要开展多方协同。《管理办法》引入企业、研究机构、行业组织、安全服务机构等各类主体参与数据安全治理。一是推动数据安全产业发展,支持数据安全企业、研究和服务机构开展数据安全技术研发创新,结合行业数据安全需求培育、发展数据安全产品和服务,提升数据安全产品供给能力。二是组织企业、研究机构、高等院校、行业组织等各类主体开展相关标准的制修订及推广应用工作,增强标准制定参与主体的广泛性,通过标准促进数据应用规范化,提升数据处理活动的安全性。三是发挥安全服务机构、行业组织、科研机构数据安全能力,鼓励协同开展数据安全风险信息上报和共享,汇聚多方力量应对数据安全风险。四是发挥评估机构专业能力,辅助开展数据安全风险评估、出境评估等活动,助力企业持续提升数据安全保障水平。
三、凝聚多方合力,全面提升工信领域数据安全保障水平
在数据安全威胁和风险日益突出,国家数据安全管理要求亟需落地的大背景下,《管理办法》的出台正当其时。《管理办法》正式实施后,将开创工信领域数据安全保护工作新局面。为进一步推动其落地,有效提升工信领域数据安全治理能力,重点提出以下几方面思考:
(一)加强政策宣贯培训,全面提升数据安全保护意识和水平
《管理办法》发布是引导工信领域深入贯彻领会数据安全管理制度要求,加快推动数据安全管理工作制度化、规范化的良好契机。做好宣贯培训,采取部级示范培训和地方重点培训相结合的方式,针对性、分层次、有深度地设计行业数据安全宣贯培训内容,对《数据安全法》《管理办法》进行系统阐释和深入解读,统一理解认识,有助于行业监管部门推动管理制度要求有效落实与执行,打响“发令枪”。同时,数据处理者要定期开展数据安全管理培训,明确关键、重点岗位培训方案,确保数据安全从业人员全覆盖,及时评定培训效果,做好“冲锋者”。
(二)做好重要数据识别备案,有效夯实数据安全工作基础
重要数据保护已成为工信领域数据安全管理的重中之重。随着《管理办法》的推进实施,还需要行业监管部门结合工业、电信行业领域自身特点和实践需求,配套制定重要数据识别标准规范,建立完善备案审核及上报流程机制,为工信领域企业深化落实数据安全基线要求进一步提供细化规则。数据处理者也需要按照行业监管部门的工作要求,紧密结合自身数据安全工作实际,定期梳理数据资源,扎实开展重要数据识别和目录动态备案管理工作,切实履行好安全主体责任。
(三)抓好风险防范化解,切实增强数据安全保障能力
有效发现、抵御工信领域数据安全突出风险,是维护数据安全的发力点和核心战力。加强数据安全风险评估、报告、信息共享、监测预警工作部署,推进全国数据安全管理平台建设,加快打造工信领域数据安全风险态势感知能力,将成为下一步行业监管工作的重点。数据处理者应围绕数据安全保护需求,配合部、省两级主管部门开展风险监测排查,及时防范行业数据安全风险隐患;做好数据安全风险评估和数据出境安全评估,不断提升数据安全合规能力。安全服务机构、行业组织、科研机构要主动参与风险信息上报和共享,按照“及时、客观、准确、真实、完整”的原则报送掌握的风险信息。
(四)加强正向激励引导,多措并举提升数据安全保护水平
坚持监督管理与正向引导相结合,有利于充分调动企业的自主性和积极性,更大程度激发企业提升自身数据安全管理水平的内生动力。行业监管部门在加强监督检查,通过执法、约谈等措施敦促企业责任落实的同时,可以综合运用行业自律、竞赛、优秀案例评选等多种方式加强示范引领,推进企业标准贯标达标工作,指引企业提升数据安全管理能力。数据处理者要充分发挥能动性,自动对标管理要求和最佳实践,自觉提升数据收集、存储、加工、传输、提供、公开、销毁等全环节安全保护水平。在业务系统上线、运营中,同步规划、同步建设、同步运行数据安全保障措施,进一步提升数据有效利用与安全保护平衡能力。
(作者:中国信通院院长 余晓晖)
(文图:赵筱尘 巫邓炎)